Soft microelectrode linear array for scanning electrochemical microscopy.

نویسندگان

  • Fernando Cortés-Salazar
  • Dmitry Momotenko
  • Andreas Lesch
  • Gunther Wittstock
  • Hubert H Girault
چکیده

A linear array of eight individual addressable microelectrodes has been developed in order to perform high-throughput scanning electrochemical microscopy (SECM) imaging of large sample areas in contact regime. Similar to previous reports, the soft microelectrode array was fabricated by ablating microchannels on a polyethylene terephthalate (PET) film and filling them with carbon ink. Improvements have been achieved by using a 5 μm thick Parylene coating that allows for smaller working distances, as the probe was mounted with the Parylene coating facing the sample surface. Additionally, the application of a SECM holder allows scanning in contact regime with a tilted probe, reducing the topographic effects and assuring the probe bending direction. The main advantage of the soft microelectrode array is the considerable decrease in the experimental time needed for imaging large sample areas. Additionally, soft microelectrode arrays are very stable and can be used several times, since the electrode surface can be regenerated by blade cutting. Cyclic voltammograms and approach curves were recorded in order to assess the electrochemical properties of the device. An SECM image of a gold on glass chip was obtained with high resolution and sensitivity, proving the feasibility of soft microelectrode arrays to detect localized surface activity. Finite element method (FEM) simulations were performed in order to establish the effect of diffusion layer overlapping between neighboring electrodes on the respective approach curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finger probe array for topography-tolerant scanning electrochemical microscopy of extended samples.

Scanning electrochemical microscopy with soft microelectrode array probes has recently been used to enable reactivity imaging of extended areas and to compensate sample corrugation perpendicular to the scanning direction. Here, the use of a new type of microelectrode arrays is described in which each individual microelectrode can independently compensate corrugations of the sample surface. It c...

متن کامل

Soft stylus probes for scanning electrochemical microscopy.

A soft stylus microelectrode probe has been developed to carry out scanning electrochemical microscopy (SECM) of rough, tilted, and large substrates in contact mode. It is fabricated by first ablating a microchannel in a polyethylene terephthalate thin film and filling it with a conductive carbon ink. After curing the carbon track and lamination with a polymer film, the V-shaped stylus was cut ...

متن کامل

Design, Fabrication, Simulation and Characterization of a Novel Dual-Sided Microelectrode Array for Deep Brain Recording and Stimulation

In this paper, a novel dual-sided microelectrode array is specially designed and fabricated for a rat Parkinson's disease (PD) model to study the mechanisms of deep brain stimulation (DBS). The fabricated microelectrode array can stimulate the subthalamic nucleus and simultaneously record electrophysiological information from multiple nuclei of the basal ganglia system. The fabricated microelec...

متن کامل

Bioelectrochemical Imaging with Micro/Nanoelectrode Systems

This paper report a novel approach for bioimaging with two different micro/nanoelectrode systems; i. e., scanning electrochemical microscopy (SECM) and individually addressable microelectrode array. Hybrid SECM systems with shear-force or ion-conductance feedback distance control were applied to high resolution and simultaneous imaging of topography and electrochemical responses of enzymes and ...

متن کامل

Enzyme-modified indium tin oxide microelectrode array-based electrochemical uric acid biosensor

We fabricated a miniaturized electrochemical uric acid biosensor with a 3-aminopropyltriethoxysilane (APTES)-modified indium tin oxide (ITO) microelectrode array (μEA). The ITO-μEA on a glass plate was immobilized with the enzyme uricase, through a cross-linker, bis[sulfosuccinimidyl]suberate (BS3). The enzyme-immobilized electrode (uricase/BS3/APTES/ITO-μEA/glass) was characterized by atomic f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 82 24  شماره 

صفحات  -

تاریخ انتشار 2010